
TurtleSec

@pati_gallardo
Turtle
Sec@pati_gallardo



TurtleSec

@pati_gallardo 2

“Basically, an attacker can grab 64K of memory from a server. 
The attack leaves no trace, and can be done multiple times 

to grab a different random 64K of memory. 
This means that anything in memory 

-- SSL private keys, user keys, anything -- is vulnerable.
And you have to assume that it is all compromised. All of it.

"Catastrophic" is the right word. 
On the scale of 1 to 10, this is an 11.”

https://www.schneier.com/blog/archives/2014/04/heartbleed.html



TurtleSec

@pati_gallardo 3@pati_gallardo 3

Heartbleed



TurtleSec

@pati_gallardo 4

What was the bug?
- Buffer over-read
- Attacker controlled buffer size



TurtleSec

@pati_gallardo 5

What made it bad?
- Remote attack
- High value memory
- Wide deploy



TurtleSec

@pati_gallardo 6

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 
before 1.0.1g do not properly handle Heartbeat Extension 
packets, 
which allows remote attackers to obtain sensitive 
information from process memory via crafted packets that 
trigger a buffer over-read”

CVE-2014-0160 Description



TurtleSec

@pati_gallardo 7

Heartbleed is a prime example of an
Information Leak



TurtleSec

@pati_gallardo 8

Heartbleed is famous for how devastating it was
But it also became 

the poster child for fuzzing



TurtleSec

@pati_gallardo

Introduction to Memory 
Exploitation

CppEurope 2021
Patricia Aas

Turtle
Sec



TurtleSec

@pati_gallardo

Patricia Aas - Trainer & Consultant

C++ Programmer, Application Security
Currently : TurtleSec

Previously : Vivaldi, Cisco Systems, Knowit, Opera Software
Master in Computer Science
Pronouns: she/they Turtle

Sec



TurtleSec

@pati_gallardo 11@pati_gallardo 11

Fuzzing



TurtleSec

@pati_gallardo

Corpus

Fuzzer
Instrumented

Target

Valid Inputs
Crash

Crashing Inputs

Coverage Feedback
12



TurtleSec

@pati_gallardo 13

Now that’s is all nice and good
But most memory errors don’t cause us to crash

At least not right away



TurtleSec

@pati_gallardo 14@pati_gallardo 14

Sanitizers



TurtleSec

@pati_gallardo 15

compiler instrumentation
run-time library

Address Sanitizer

terminal
$ clang++ -fsanitize=address overflow.cpp
$ ./a.out 
ERROR: AddressSanitizer: stack-buffer-overflow

@pati_gallardo

Cl
an

g
GC

C
VS



TurtleSec

@pati_gallardo 16

Address Sanitizer provokes crash-like behavior
for many memory bugs

Supercharges fuzzing
Makes it possible to find “hidden” bugs



TurtleSec

@pati_gallardo

DebuggerFuzzerSanitizers

17

Make application 
crashy

Provoke weird 
behavior

Analyze



TurtleSec

@pati_gallardo 18@pati_gallardo 18

So you found a bug.
What now?



TurtleSec

@pati_gallardo 19@pati_gallardo 19

Exploitation



TurtleSec

@pati_gallardo

Secret:

Access 
Granted

Operation 
complete

Launching 
missiles

Access 
Denied

The Programmers Mental State Machine

“David”

“Joshua”

Weird 
State“globalthermonuclearwar” Terminate

20



TurtleSec

@pati_gallardo
The Target The Shellcode@halvarflake

Weird 
State

Weird 
State

Programming the Weird Machine

Vulnerability

@sergeybratus

21



TurtleSec

@pati_gallardo

Shellcode

Piece of code, typically in machine code, 
that is delivered and executed as a part of an exploit. 

Called “shellcode” because a traditional use was 
to start a shell, for example sh.

In real exploits it will deliver some kind of mechanism for 
further (remote) compromise of the system.

22



TurtleSec

@pati_gallardo

Exploit

Write 
Memory

Read Memory Execute Code

Information Leaks Running of Shellcode

Planting of Shellcode

The Anatomy of an Exploit

23



TurtleSec

@pati_gallardo 24

To run your shellcode you need the instruction pointer 
to jump to your shellcode. 

The instruction pointer jumps in many different scenarios
- goal here is to control where it jumps to, examples:

return from a function
virtual function call

function pointer

Code Execution



TurtleSec

@pati_gallardo 25

A vulnerability or a capability in the application 
that can be used as a part of a wider exploit 

is often referred to as a “primitive”- examples:
Arbitrary Read Primitive

Write-What-Where Primitive
Read-Where Primitive

“Primitives”



TurtleSec

@pati_gallardo 26@pati_gallardo 26

Mitigations



TurtleSec

@pati_gallardo

Exploit

Write 
Memory

Read Memory Execute Code

ASLR
Limit interesting info?

Non executable memory
Stack Canaries

Address Space Layout 
Randomization (ASLR)

Platform and Compiler Mitigations

27



TurtleSec

@pati_gallardo 28@pati_gallardo 28

Cleaning Memory?



TurtleSec

@pati_gallardo

The Case Of The Disappearing Memset
@pati_gallardo 29

Dead Store Elimination

The compiler is allowed to optimize away 
stores that cannot be detected
Meaning memset’ing of memory that is 
never read can be removed



TurtleSec

@pati_gallardo 30@pati_gallardo 30The Heap



TurtleSec

@pati_gallardo 31@pati_gallardo 31

Allocators



TurtleSec

@pati_gallardo

Simple Pool Allocator

32



TurtleSec

@pati_gallardo

Empty Pool

33



TurtleSec

@pati_gallardo

Initial allocations

34



TurtleSec

@pati_gallardo

Initial allocations

35



TurtleSec

@pati_gallardo

Initial allocations

36



TurtleSec

@pati_gallardo

Initial allocations

37



TurtleSec

@pati_gallardo

An allocation is freed - what now?

38



TurtleSec

@pati_gallardo

An allocation is freed - what now?

Free

39



TurtleSec

@pati_gallardo

Another allocation is freed - what now?

Free

40



TurtleSec

@pati_gallardo

Another allocation is freed - what now?

Free

41



TurtleSec

@pati_gallardo

Another allocation is freed - what now?

Free

42



TurtleSec

@pati_gallardo

Free

coalesce?

link?

43



TurtleSec

@pati_gallardo 44

So… how can we exploit this behavior?
We can allocate!



TurtleSec

@pati_gallardo 45@pati_gallardo 45

Heap Spraying



TurtleSec

@pati_gallardo 46

Fill memory with a certain byte sequence
possibly shellcode

so that a “random” jump might hit it

Heap Spraying



TurtleSec

@pati_gallardo 47

Normal Allocation

Heap Spraying

Initial state



TurtleSec

@pati_gallardo 48

Normal Allocation

Heap Spraying

Fill memory with shellcode Shellcode



TurtleSec

@pati_gallardo 49

This is a bit scattershot
Can we have more control?



TurtleSec

@pati_gallardo 50@pati_gallardo 50
(Heap Feng Shui)

Heap Grooming



TurtleSec

@pati_gallardo 51

Create predictable memory patterns
Trick the allocator to allocate a specific chunk

A chunk you can control
Let’s see it in action



TurtleSec

@pati_gallardo 52@pati_gallardo 52

Putting it all together



TurtleSec

@pati_gallardo 53

“The Shadow Brokers”

Hacking group behind a leak in 2016-17
The leaked exploits and tools are believed to be NSAs

The Shadow Brokers are suspected to be Russian
The leak was done in several batches

Most famous is the Eternal Blue exploit



TurtleSec

@pati_gallardo 54

Very Light Background: Windows SMBv1

Request

Response
Client Server

SMB messages

Aside: This is the diagram of all things computer



TurtleSec

@pati_gallardo 55@pati_gallardo 55

EternalBlueEternal Exploits



TurtleSec

@pati_gallardo

DoublePulsar

EternalBlue

EternalRomance

EternalChampion

EternalSynergy 

56



TurtleSec

@pati_gallardo

EternalBlue

Write-What-Where Primitive and Remote Code Execution

Linear Buffer Overrun, Heap Spray / Heap Grooming

57



TurtleSec

@pati_gallardo

“When updating the length of the list, 
the size is written to as if it were a 16-bit ushort, 
when it is actually a 32-bit ulong. 
This means that the upper 16-bits are not updated 
when the list gets truncated.”
Microsoft Defender Security Research Team

58

Main bug



TurtleSec

@pati_gallardo

- Primes the heap
- Fills with blocks ready for shellcode
- Makes room for buffer that will overrun
- Overrun will prepare code execution
- Hopes to overrun into one of the prepared blocks

59

Heap Grooming and Spray



TurtleSec

@pati_gallardo

Heap Grooming

Initial state

60



TurtleSec

@pati_gallardo

Heap Grooming

Filling gaps to make allocations predictable

Grooming Packet

61



TurtleSec

@pati_gallardo

Heap Grooming

Prefill before making pattern

Grooming Packet Grooming Packet

62



TurtleSec

@pati_gallardo

Heap Grooming

Make room for your objects

Grooming Packet Grooming Packet

63

Free up holes



TurtleSec

@pati_gallardo

Heap Grooming

Pattern: Fish in a barrel

Grooming Packet Grooming Packet

64

Overflow Packet



TurtleSec

@pati_gallardo

Heap Grooming

Pattern: Fish in a barrel

Grooming Packet Ready for ExecutionGrooming Packet

65

Overflow Packet



TurtleSec

@pati_gallardo

Heap Grooming

Grooming Packet Grooming Packet

shellcode

Ready for Execution

66



TurtleSec

@pati_gallardo

When connection is closed 
the shellcode is executed 
in the block(s) that have been overrun
Installs the DoublePulsar backdoor implant

67

Code Execution



TurtleSec

@pati_gallardo 68@pati_gallardo 68

How does that affect me?



TurtleSec

@pati_gallardo 69

There is no magic here
These are bugs you can find

The tools they use are tools you can use

Basically: Fix Bugs



TurtleSec

@pati_gallardo
Turtle
Sec@pati_gallardo


