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“Basically, an attacker can grab 64K of memory from a server. 
The attack leaves no trace, and can be done multiple times 

to grab a different random 64K of memory. 
This means that anything in memory 

-- SSL private keys, user keys, anything -- is vulnerable.
And you have to assume that it is all compromised. All of it.

"Catastrophic" is the right word. 
On the scale of 1 to 10, this is an 11.”

https://www.schneier.com/blog/archives/2014/04/heartbleed.html
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Heartbleed
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What was the bug?
- Buffer over-read
- Attacker controlled buffer size
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What made it bad?
- Remote attack
- High value memory
- Wide deploy



TurtleSec

@pati_gallardo 6

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 
before 1.0.1g do not properly handle Heartbeat Extension 
packets, 
which allows remote attackers to obtain sensitive 
information from process memory via crafted packets that 
trigger a buffer over-read”

CVE-2014-0160 Description
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Heartbleed is a prime example of an
Information Leak
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Heartbleed is famous for how devastating it was
But it also became 

the poster child for fuzzing
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Fuzzing
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Now that’s is all nice and good
But most memory errors don’t cause us to crash

At least not right away
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Sanitizers
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compiler instrumentation
run-time library

Address Sanitizer

terminal
$ clang++ -fsanitize=address overflow.cpp
$ ./a.out 
ERROR: AddressSanitizer: stack-buffer-overflow
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Address Sanitizer provokes crash-like behavior
for many memory bugs

Supercharges fuzzing
Makes it possible to find “hidden” bugs
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DebuggerFuzzerSanitizers
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Make application 
crashy

Provoke weird 
behavior

Analyze
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So you found a bug.
What now?
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Exploitation
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Shellcode

Piece of code, typically in machine code, 
that is delivered and executed as a part of an exploit. 

Called “shellcode” because a traditional use was 
to start a shell, for example sh.

In real exploits it will deliver some kind of mechanism for 
further (remote) compromise of the system.
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Exploit
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Memory
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Information Leaks Running of Shellcode

Planting of Shellcode

The Anatomy of an Exploit
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To run your shellcode you need the instruction pointer 
to jump to your shellcode. 

The instruction pointer jumps in many different scenarios
- goal here is to control where it jumps to, examples:

return from a function
virtual function call

function pointer

Code Execution
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A vulnerability or a capability in the application 
that can be used as a part of a wider exploit 

is often referred to as a “primitive”- examples:
Arbitrary Read Primitive

Write-What-Where Primitive
Read-Where Primitive

“Primitives”
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Mitigations
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Exploit

Write 
Memory

Read Memory Execute Code

ASLR
Limit interesting info?

Non executable memory
Stack Canaries

Address Space Layout 
Randomization (ASLR)

Platform and Compiler Mitigations
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Cleaning Memory?
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The Case Of The Disappearing Memset
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Dead Store Elimination

The compiler is allowed to optimize away 
stores that cannot be detected
Meaning memset’ing of memory that is 
never read can be removed
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Allocators
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Simple Pool Allocator
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Empty Pool
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Initial allocations
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Initial allocations
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Initial allocations
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Initial allocations
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An allocation is freed - what now?

38



TurtleSec

@pati_gallardo

An allocation is freed - what now?

Free
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Another allocation is freed - what now?

Free
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Another allocation is freed - what now?

Free
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Another allocation is freed - what now?

Free
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Free

coalesce?

link?
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So… how can we exploit this behavior?
We can allocate!
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Heap Spraying
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Fill memory with a certain byte sequence
possibly shellcode

so that a “random” jump might hit it

Heap Spraying



TurtleSec

@pati_gallardo 47

Normal Allocation

Heap Spraying

Initial state
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Normal Allocation

Heap Spraying

Fill memory with shellcode Shellcode
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This is a bit scattershot
Can we have more control?
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(Heap Feng Shui)

Heap Grooming
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Create predictable memory patterns
Trick the allocator to allocate a specific chunk

A chunk you can control
Let’s see it in action
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Putting it all together
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“The Shadow Brokers”

Hacking group behind a leak in 2016-17
The leaked exploits and tools are believed to be NSAs

The Shadow Brokers are suspected to be Russian
The leak was done in several batches

Most famous is the Eternal Blue exploit
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Very Light Background: Windows SMBv1

Request

Response
Client Server

SMB messages

Aside: This is the diagram of all things computer
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EternalBlueEternal Exploits
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DoublePulsar

EternalBlue

EternalRomance

EternalChampion

EternalSynergy 
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EternalBlue

Write-What-Where Primitive and Remote Code Execution

Linear Buffer Overrun, Heap Spray / Heap Grooming
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“When updating the length of the list, 
the size is written to as if it were a 16-bit ushort, 
when it is actually a 32-bit ulong. 
This means that the upper 16-bits are not updated 
when the list gets truncated.”
Microsoft Defender Security Research Team
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Main bug
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- Primes the heap
- Fills with blocks ready for shellcode
- Makes room for buffer that will overrun
- Overrun will prepare code execution
- Hopes to overrun into one of the prepared blocks
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Heap Grooming and Spray
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Heap Grooming

Initial state
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Heap Grooming

Filling gaps to make allocations predictable

Grooming Packet
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Heap Grooming

Prefill before making pattern

Grooming Packet Grooming Packet
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Heap Grooming

Make room for your objects

Grooming Packet Grooming Packet
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Free up holes
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Heap Grooming

Pattern: Fish in a barrel

Grooming Packet Grooming Packet
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Overflow Packet
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Heap Grooming

Pattern: Fish in a barrel

Grooming Packet Ready for ExecutionGrooming Packet
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Overflow Packet
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Heap Grooming

Grooming Packet Grooming Packet

shellcode

Ready for Execution
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When connection is closed 
the shellcode is executed 
in the block(s) that have been overrun
Installs the DoublePulsar backdoor implant
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Code Execution
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How does that affect me?
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There is no magic here
These are bugs you can find

The tools they use are tools you can use

Basically: Fix Bugs
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