DOES SOFTWARE MATURES LIKE CHEESE?

THE COMING OF AGE OF AN HPC LIBRARY
February 18, 2021

Joel FALCOU

Powered by Markdeep and Markdeep-Slides


file:///large-hdd/dev/presentations/images/lri.jpg
file:///large-hdd/dev/presentations/images/codereckons.png
file:///large-hdd/dev/presentations/images/ccby40.png

The Genesis of E.V.E.

1001 Flavors of SIMD

e Available on all major CPU yet used sporadically

e SIMD instruction set provides large registers

e Operations are performed on multiple data at once

e Usually used by using intrinsics or praying to the AutoVectorizer Gods

E.V.E - A SIMD wrapper library

e Started as a OCAML wrapper for PPC Altivec (2005)

e Evolved into a Altivec/SSE2 wrapper (2006)

e Once hidden inside NT2 (2008-2014), then as Boost.SIMD (2014-2017)
e Now under reconstruction as a C++20 library

1/31



A Slice of Performances

Main E.V.E features

e Provides a type-based wrapper around most current SIMD instruction sets
e Strongly oriented toward numerical applications

e User-level trade-off management (fast? precise? you decide!)

e Designed as to take advantage of most of latest C++ standard

Want to know more ?

e Finditon Github

e Play withiton Compiler Explorer

e Have look at the in-progress documentation
e Bug me after this talk ;)

2/31


https://github.com/jfalcou/eve
https://godbolt.org/z/qzbf4G
https://jfalcou.github.io/eve/

A Slice of Elegance

A Portable simd_strilen

1 std::size_t simd_strlen(unsigned char constx s)

2 A

3 eve::aligned_ptr aligned_s = eve::previous_aligned_address(s);
4

5 eve::wide cur = eve::unsafe(eve::load) (aligned_s);

6 auto ignore = eve::ignore_first(s - aligned_s.get());
7 std::optional match = eve::first_true[ignore](cur = 0);

8

9 while (!match)

10 {

11 aligned_s += wide::static_size;

12 cur = eve::unsafe(eve::load) (aligned_s);

13 match = eve::first_true(cur = 0);

14 }

15

16 return static_cast<std::size_t>(aligned_s.get() + *match - s);
17 }

3/31


https://godbolt.org/z/qezheM

The Message of this Talk

Library design is two-sided

e User-facing APl must be compelling to use
e Dev-facing APl must enable fast development

How do three standards change the library?

e New language features
e New idioms

How the vision of a long term project changes?

e The importance of user API perception
e Design for usability

4/31



Type Interface

e


file:///large-hdd/dev/presentations/images/camembert.png

Type Interfaces as Public Relationships

The Context

e First version of E.V.E provided a pack abstraction for SIMD registers
e pack was complete with array and tuple-like interface
e One can even iterate over the scalar contents

// Definition
template<typename Type, std::size_t Cardinal, typename ABI = ...> struct pack;

// Usage
pack<int, 8> x;

x[0] = 1;
for(std::size_t i=1;i<x.size();++1i)
x[i] = 2% x[i-11;

P ® V0030 0l DNWN PR

I

std::cout << x[x.size()-1] << "\n";

6/31



Type Interfaces as Public Relationships

The Issues

e People kept trying to use pack, an abstraction of a register, as a genuine array
e Most frequent question : “Why does pack<float, 735> doesn't work?”

e People will often just write bad scalar code instead of using SIMD

e Implementation required heavy aliasing hand-waving

The Solution

e Renamed pack (smells like an array) to wide (descriptor of the register)

e Cut off the Type x Integer interface of pack in favor of an all-type one

e Remove the lterator and Array interface in favor of explicit get/set

e [C++11] Provide a lambda based constructor to prevent people iterating at initialization
e [C++11] Statically assert sizes are actual SIMD compatible size

7/31



Type Interfaces as Public Relationships

The Solution

// Definition
template<typename Type, typename Cardinal, typename ABI = ...> struct wide;

// Usage
wide<int,fixed<8>> x( [](auto i, auto c¢) { return 1+i; });

N o0l NN

std::cout << x.get(x.size()-1) << "\n";
Specifics

e fixedis a Cardinal type and asserts size are SIMD compatible

e fixed provides internal types to generically compute an upcast or downcast Cardinal
e Other types are provided to discriminate between scalar and SIMD register of size 1
e The explicit nature of get makes you pause to think about it

8/31



Type Interfaces as Public Relationships

Assessing the Situation

e Users have been trained to recognize APl by name
e If it looks like an array, why can't | use it as such?
e Our mistake was to fall into the Uncanny Valley of APIs

OUR FINDINGS

e API are not just about adding but also about removing.

e Don't over mimic existing type if there are “ifs” and “buts”

e Prefer semantic-rich types to simple integral constant if possible

e “Make APIs that are easy to use correctly and hard to use incorrectly”, Scott Meyers

9/31



Functions & Objects



file:///large-hdd/dev/presentations/images/beaufort.png

Functions: The Powerhouse of Numerical Libraries

Objectives

SIMD implementation in E.V.E need to be reusable

Overload should be possible over architecture, instruction sets, types
Adding special case for specific optimization must be allowed
Easy-to-use, Easy-to-discover API

Initial Design

e E.V.E functions were 50% functions, 50% functions calling Callable Object internally
e Used Boost.Dispatch, a generic version of tag dispatching

e Some cases required resolving multiple overload resolutions

e Advantage: compile at 11, go get lunch, compilation is ready for coffee

11/31



Functions: The Powerhouse of Numerical Libraries

Objectives

SIMD implementation in E.V.E need to be reusable

Overload should be possible over architecture, instruction sets, types
Adding special case for specific optimization must be allowed
Easy-to-use, Easy-to-discover API

New Design

[C++11/17] E.V.E uses (inline) Callable Object that calls specific optimized functions
[C++11] Use object as type parameters

[C++11] New API due to adding members to said Callable

[C++14] Higher-order functions as decorators

12/31



Functions: The Powerhouse of Numerical Libraries

Types as parameters

e Some functions require a type as parameter
e But some people are still scared of templates
e Use a throw-away object to pass type to the function

[N

P ® 0V 00~J0 0NN R

// Definition

template<typename T> struct

inline constexpr as<double> double_
inline constexpr as<float> single_

// Usage
wide<int>

w;

wide<float> X

auto
auto

y
z

as { using type = T; };

{};
{}; // etc...

bit_cast(w, as<wide<float>>()); // use explicit type

bit_cast(w, as(x));
convert(x, single_);

// use the same type as x
// use pre-made type

13/31



Functions: The Powerhouse of Numerical Libraries

Adding API on top of Callables

(o}
(o}

C

0 o001 NN

// Usage
wide<int> a,b,c;

c + 4;
add[a<b](c,4);

c *x b;
mul[ignore_first(2)1(c,b);

// c
// c

// c
// c

SIMD has supports for conditionally masked operations

Acts more as semantic modifications than parameters

E.V.E functions can be passed conditionals via operator[]
Masking capability is defined on a per function basis via traits

= Cc+4
= c+4 when a<b

= c*b
= c*xb except for first 2 values

14/31



Functions: The Powerhouse of Numerical Libraries

Higher-Order Functions as decorators

e SIMD implementation is full of trade-off: speed, precision, standard conformance

e As functions are Callables Objects, pass them to decorator Callables

e Returns a properly setup lambda selecting the correct implementation in a lazy way
e Decorators are combinable, saving names from design space

1 struct pedantic_

2 A

3 template<typename Callable> constexpr auto operator()(Callable&& f) noexcept
4 {

5 return [func = std::forward<Callable>(f)]<typename... Args>(Args8&... args)
6 {

7 return func( pedantic_{}, std::forward<Args>(args)...);

8 g

9 +

0

10 };



Functions: The Powerhouse of Numerical Libraries

Higher-Order Functions as decorators

[ J
[ J
[}
[ J
1 // Usage
2  wide<float> x,y;
3
4 x = exply);
5 a = saturated(add)(b,c);
6 x = pedantic(exp)(y,z);
7 x = numeric(min) (x,y);
8 x = raw(sqrt) (x);
9
10y = diff(pedantic) (exp)(x);

SIMD implementation is full of trade-off: speed, precision, standard conformance
As functions are Callables Objects, pass them to decorator Callables

Returns a properly setup lambda selecting the correct implementation in a lazy way
Decorators are combinable, saving names from design space

// Regular exp call

// Addition with saturation

// exp with special cases for denormals/infinites
// minimum without taking NaNs into account

// sqrt with fast implementation, no error checking

// differential, pedantic exponential



Implementation of Architecture-Optimized Callables

The Issues

e A typical E.V.E functions may have had 4-8 overloads

e Some SIMD instructions + types combo were to be emulated
e Some SIMD architecture just didn't support some types

e Some functions required very specific optimizations

Design decision

e Detect SIMD architectures and instructions sets via traits

e [C++20] Use Concepts to overload on SIMD architecture

e [C++17] Use if constexpr to write code based on available SIMD instructions sets
e [C++14/17] Use enum based categorization to simplify type recognition

17/31



Implementation of Architecture-Optimized Callables

The Issues

e Each SIMD architecture register has a given size in bits: 128, 256, etc...

e E.V.E. calls those family of registers a SIMD ABI: eg. x86_256

e All available ABI of a given architecture models this architecture Concept

e E.g:the x86_abi concept is modeled by the x86_128, x86_256 and x86_512 type

Using Concepts to discriminate architectures

e This ABI plays a part in the overload resolutions

e A trait computing the ABI associated to a Type/Cardinal pair is available

e A Concept for each of those ABI based on this trait is defined

e Overload based on ABI dramatically reduces the number of overloads to consider



Implementation of Architecture-Optimized Callables

Concepts for SIMD ABI

1 template<typename Type, typename Cardinal> consteval auto abi_of()
2 A

3 constexpr auto width = sizeof(Type) * Cardinal;

4 if constexpr( spy::simd_instruction_set = spy::x86_simd_ )

5 {

6 if constexpr( width < 16) return x86_128_{};

7 else if constexpr( width = 32) return x86_256_{};

8 else if constexpr( width = 64) return x86_512_{};

9

+
10 else if constexpr( spy::simd_instruction_set = spy::arm_simd_ )
11 {
12 if constexpr( width < 8 ) return arm_é64_{};
13 else if constexpr( width = 16) return arm_128_{};
14 }
15 // ... etc
16 }

19/31



Implementation of Architecture-Optimized Callables

Concepts for SIMD ABI

e Used in functions to discriminate optimization strategies
e Minimize the number of overloads of entry-points
e Reduced compile time by a factor of 3

1 template<typename T, typename N, x86_abi ABI>

2 auto add(wide<T,N,ABI> lhs, wide<T,N,ABI> rhs)

3 q

4 // Do something with X86 SIMD instruction sets

5 }

6

7 template<typename T, typename N, non_native_abi ABI> // For all other cases
8 auto add(wide<T,N,ABI> lhs, wide<T,N,ABI> rhs)

9 A

10 if constexpr( is_aggregated_v<ABI> ) return aggregate(add,lhs,rhs);
11 else if constexpr( is_emulated_v<ABI> ) return map(add,lhs,rhs);

12 }

20/31



Implementation of Architecture-Optimized Callables

The Issues

e SIMD instruction sets are widly divergent even for a given ABI
e Types, micro-architectures, etc all play a role
e How to be able to write the most efficient code with the least overloads?

if constexpr for intrinsics selection

e Use SPY to select instructon set at compile-time

e Provide a type — enumeration function to categorize types

e Categories are build as bitfield encoding base type, size and cardinal
e Nestif constexpr according to the optimisation we want to obtain

21/31



Implementation of Architecture-Optimized Callables

if constexpr for intrinsics selection

template<typename T, typename N, x86_abi ABI> auto add(wide<T,N,ABI> lhs, wide<T,N,ABI>

{

constexpr auto ¢ =

if constexpr ( ¢ = category::
else if constexpr ( ¢ = category::
else if constexpr ( ¢ = category::
// etc...
else if constexpr ( ¢ = category::
else if constexpr ( current_api =
{
if constexpr ( ¢ = category::
else if constexpr ( ¢ = category::
else if constexpr ( ¢ = category::
// etc...
else if constexpr ( ¢ = category::
+

categorize<wide<T,N,ABI>>();

float64x8
floaté4axa
floaté4x2

uint8x16
avx2 )

inté4x4
int32x8
intléx1é

int8x32

)
)

)

return
return
return

return

return

return

return

return

_mm512_add_pd(lhs, rhs);
_mm256_add_pd(lhs, rhs);
_mm_add_pd(lhs, rhs);

_mm_add_epi8(lhs, rhs);
_mm256_add_epibé4(lhs,rhs);
_mm256_add_epi32(lhs, rhs);

_mm256_add_epil6(lhs,rhs);

_mm256_add_epi8(lhs,rhs);

rhs)



Functions: The Powerhouse of Numerical Libraries

Assessing the Situation

e Functions as Objects is a very valuable API design tool
e Names is a very small design space. Protect it
e Our mistake was to be to clever in implementation, Keep It Stupid Simple

OUR FINDINGS

Concept and if constexpr are great to structure large overload set
e HOF makes API design easier on name finding

e Don't be shy to try amping up the Object side of Function Objects

e Looking forward std:: tag_invoke



Other API Decisions



file:///large-hdd/dev/presentations/images/nectaire.png

Abstraction for Optimizations

The Issues

e Some SIMD idioms requires complicated knowledge or setup
e They are usually non-trivial for the users
e We could not wait for the users to discover them

Example: register swizzling

SIMD registers can have their content moved around
But each instructions sets has different rules for this
How to have users not being left out by not using the correct swizzle ?

([ ]
([ ]
[ ]
e ‘Library design for compilation time” as put by Victor Zverovich

25/31



r Optimizations

Sample Swizzle

wide<float, fixed<4>> x;

// Direct index pattern -- not very portable
auto rx = x[ pattern<3,2,1,0> I;

auto rx2 = x[ as_pattern{ [](auto i, auto c) { return c-i-1; }}1;

// Parametric swizzle - using pre-defined pattern

1
2
3
4
5
6 // Parametric swizzle - use constexpr lambda
7
8
9
0 auto rx2 = x[ reverse_n<4> 1;

Benefits

e [C++20] Use a consteval mapping of patterns to implementation
e No need to remember which tricks work for which architecture

e Compile-time is mitigated by using consteval functions over template classes .



Conclusion



file:///large-hdd/dev/presentations/images/reblochon.jpg

Time to taste!

Impact on code - Before

e Peak Boost.SIMD was 650K LOC
e Average compile-time for unit tests: 10-12s
e API was heterogeneous and prone to errors

Impact on code - After

e EVE is 54K LOC for equivalent features
e Average compile-time for unit tests: 3-4s
e API streamlined and simplified

The Heavy Hitters

e [C++20] Concepts
e [C++17] if constexpr
28/31



A Long Journey

15 years of Design on moving stages

e Hardware and Software were moving targets: 10+ new SIMD IS appeared since
e The ever-evolving C++ standard helped leverage ideas we deemed impossible
e Encouraged us to play around API design for users and devs

API is everything

e Libraries are more than a collection functions and types
e Names have powers, Users have memories

A Huge Thanks to:

e Jean-Thierry Lapresté, Mathematician extraordinaire
e Pierre Estérie, my former PHD student
e Denis Yaroshevskiy, for being a great contributor ;)
29/31



Thanks for your attention !




