
DOES SOFTWARE MATURES LIKE CHEESE?

THE COMING OF AGE OF AN HPC LIBRARY

February 18, 2021

Joel FALCOU

Powered by Markdeep and Markdeep-Slides

file:///large-hdd/dev/presentations/images/lri.jpg
file:///large-hdd/dev/presentations/images/codereckons.png
file:///large-hdd/dev/presentations/images/ccby40.png

The Genesis of E.V.E.

1001 Flavors of SIMD

● Available on all major CPU yet used sporadically

● SIMD instruction set provides large registers

● Operations are performed on multiple data at once

● Usually used by using intrinsics or praying to the AutoVectorizer Gods

E.V.E - A SIMD wrapper library

● Started as a OCAML wrapper for PPC Altivec (2005)

● Evolved into a Altivec/SSE2 wrapper (2006)

● Once hidden inside NT2 (2008-2014), then as Boost.SIMD (2014-2017)

● Now under reconstruction as a C++20 library

1/31

A Slice of Performances

Main E.V.E features

● Provides a type-based wrapper around most current SIMD instruction sets

● Strongly oriented toward numerical applications

● User-level trade-off management (fast? precise? you decide!)

● Designed as to take advantage of most of latest C++ standard

Want to know more ?

● Find it on Github
● Play with it on Compiler Explorer
● Have look at the in-progress documentation
● Bug me after this talk ;)

2/31

https://github.com/jfalcou/eve
https://godbolt.org/z/qzbf4G
https://jfalcou.github.io/eve/

A Slice of Elegance

A Portable simd_strlen

1 std��size_t simd_strlen(unsigned char const* s)
2 {
3 eve��aligned_ptr aligned_s = eve��previous_aligned_address(s);
4
5 eve��wide cur = eve��unsafe(eve��load)(aligned_s);
6 auto ignore = eve��ignore_first(s - aligned_s.get());
7 std��optional match = eve��first_true[ignore](cur �� 0);
8
9 while (!match)
10 {
11 aligned_s += wide��static_size;
12 cur = eve��unsafe(eve��load)(aligned_s);
13 match = eve��first_true(cur �� 0);
14 }
15
16 return static_cast<std��size_t>(aligned_s.get() + *match - s);
17 }

3/31

https://godbolt.org/z/qezheM

The Message of this Talk

Library design is two-sided

● User-facing API must be compelling to use

● Dev-facing API must enable fast development

How do three standards change the library?

● New language features

● New idioms

How the vision of a long term project changes?

● The importance of user API perception

● Design for usability

4/31

Type Interface

5/31

file:///large-hdd/dev/presentations/images/camembert.png

Type Interfaces as Public Relationships

The Context

● First version of E.V.E provided a pack abstraction for SIMD registers

● pack was complete with array and tuple-like interface

● One can even iterate over the scalar contents

1 �� Definition
2 template<typename Type, std��size_t Cardinal, typename ABI = ���> struct pack;
3
4 �� Usage
5 pack<int,8> x;
6
7 x[0] = 1;
8 for(std��size_t i=1;i<x.size();��i)
9 x[i] = 2* x[i-1];
10
11 std��cout �� x[x.size()-1] �� "\n";

6/31

Type Interfaces as Public Relationships

The Issues

● People kept trying to use pack, an abstraction of a register, as a genuine array

● Most frequent question : “Why does pack<float,735> doesn't work?”

● People will often just write bad scalar code instead of using SIMD

● Implementation required heavy aliasing hand-waving

The Solution

● Renamed pack (smells like an array) to wide (descriptor of the register)

● Cut off the Type x Integer interface of pack in favor of an all-type one

● Remove the Iterator and Array interface in favor of explicit get/set
● [C++11] Provide a lambda based constructor to prevent people iterating at initialization

● [C++11] Statically assert sizes are actual SIMD compatible size

7/31

Type Interfaces as Public Relationships

The Solution

1 �� Definition
2 template<typename Type, typename Cardinal, typename ABI = ���> struct wide;
3
4 �� Usage
5 wide<int,fixed<8�� x([](auto i, auto c) { return 1+i; });
6
7 std��cout �� x.get(x.size()-1) �� "\n";

Specifics

● fixed is a Cardinal type and asserts size are SIMD compatible

● fixed provides internal types to generically compute an upcast or downcast Cardinal

● Other types are provided to discriminate between scalar and SIMD register of size 1

● The explicit nature of get makes you pause to think about it

8/31

Type Interfaces as Public Relationships

Assessing the Situation

● Users have been trained to recognize API by name

● If it looks like an array, why can't I use it as such?

● Our mistake was to fall into the Uncanny Valley of APIs

9/31

OUR FINDINGS

● API are not just about adding but also about removing.

● Don't over mimic existing type if there are “ifs” and “buts”

● Prefer semantic-rich types to simple integral constant if possible

● “Make APIs that are easy to use correctly and hard to use incorrectly”, Scott Meyers

Functions & Objects

10/31

file:///large-hdd/dev/presentations/images/beaufort.png

Functions: The Powerhouse of Numerical Libraries

Objectives

● SIMD implementation in E.V.E need to be reusable

● Overload should be possible over architecture, instruction sets, types

● Adding special case for specific optimization must be allowed

● Easy-to-use, Easy-to-discover API

Initial Design

● E.V.E functions were 50% functions, 50% functions calling Callable Object internally

● Used Boost.Dispatch, a generic version of tag dispatching

● Some cases required resolving multiple overload resolutions

● Advantage: compile at 11, go get lunch, compilation is ready for coffee

11/31

Functions: The Powerhouse of Numerical Libraries

Objectives

● SIMD implementation in E.V.E need to be reusable

● Overload should be possible over architecture, instruction sets, types

● Adding special case for specific optimization must be allowed

● Easy-to-use, Easy-to-discover API

New Design

● [C++11/17] E.V.E uses (inline) Callable Object that calls specific optimized functions

● [C++11] Use object as type parameters

● [C++11] New API due to adding members to said Callable

● [C++14] Higher-order functions as decorators

12/31

Functions: The Powerhouse of Numerical Libraries

Types as parameters

● Some functions require a type as parameter

● But some people are still scared of templates

● Use a throw-away object to pass type to the function

1 �� Definition
2 template<typename T> struct as { using type = T; };
3
4 inline constexpr as<double> double_ = {};
5 inline constexpr as<float> single_ = {}; �� etc���
6
7 �� Usage
8 wide<int> w;
9 wide<float> x = bit_cast(w, as<wide<float��()); �� use explicit type
10 auto y = bit_cast(w, as(x)); �� use the same type as x
11 auto z = convert(x, single_); �� use pre-made type

13/31

Functions: The Powerhouse of Numerical Libraries

Adding API on top of Callables

● SIMD has supports for conditionally masked operations

● Acts more as semantic modifications than parameters

● E.V.E functions can be passed conditionals via operator[]
● Masking capability is defined on a per function basis via traits

1 �� Usage
2 wide<int> a,b,c;
3
4 c = c + 4; �� c = c+4
5 c = add[a<b](c,4); �� c = c+4 when a<b
6
7 c = c * b; �� c = c*b
8 c = mul[ignore_first(2)](c,b); �� c = c*b except for first 2 values

14/31

Functions: The Powerhouse of Numerical Libraries

Higher-Order Functions as decorators

● SIMD implementation is full of trade-off: speed, precision, standard conformance

● As functions are Callables Objects, pass them to decorator Callables

● Returns a properly setup lambda selecting the correct implementation in a lazy way

● Decorators are combinable, saving names from design space

1 struct pedantic_
2 {
3 template<typename Callable> constexpr auto operator()(Callable�� f) noexcept
4 {
5 return [func = std��forward<Callable>(f)]<typename��� Args>(Args����� args)
6 {
7 return func(pedantic_{}, std��forward<Args>(args)���);
8 };
9 }
10 };

15/31

Functions: The Powerhouse of Numerical Libraries

Higher-Order Functions as decorators

● SIMD implementation is full of trade-off: speed, precision, standard conformance

● As functions are Callables Objects, pass them to decorator Callables

● Returns a properly setup lambda selecting the correct implementation in a lazy way

● Decorators are combinable, saving names from design space

1 �� Usage
2 wide<float> x,y;
3
4 x = exp(y); �� Regular exp call
5 a = saturated(add)(b,c); �� Addition with saturation
6 x = pedantic(exp)(y,z); �� exp with special cases for denormals/infinites
7 x = numeric(min)(x,y); �� minimum without taking NaNs into account
8 x = raw(sqrt)(x); �� sqrt with fast implementation, no error checking
9
10 y = diff(pedantic)(exp)(x); �� differential, pedantic exponential

16/31

Implementation of Architecture-Optimized Callables

The Issues

● A typical E.V.E functions may have had 4-8 overloads

● Some SIMD instructions + types combo were to be emulated

● Some SIMD architecture just didn't support some types

● Some functions required very specific optimizations

Design decision

● Detect SIMD architectures and instructions sets via traits

● [C++20] Use Concepts to overload on SIMD architecture

● [C++17] Use if constexpr to write code based on available SIMD instructions sets

● [C++14/17] Use enum based categorization to simplify type recognition

17/31

Implementation of Architecture-Optimized Callables

The Issues

● Each SIMD architecture register has a given size in bits: 128, 256, etc...

● E.V.E. calls those family of registers a SIMD ABI: eg. x86_256
● All available ABI of a given architecture models this architecture Concept

● E.g: the x86_abi concept is modeled by the x86_128, x86_256 and x86_512 type

Using Concepts to discriminate architectures

● This ABI plays a part in the overload resolutions

● A trait computing the ABI associated to a Type/Cardinal pair is available

● A Concept for each of those ABI based on this trait is defined

● Overload based on ABI dramatically reduces the number of overloads to consider

18/31

Implementation of Architecture-Optimized Callables

Concepts for SIMD ABI

1 template<typename Type, typename Cardinal> consteval auto abi_of()
2 {
3 constexpr auto width = sizeof(Type) * Cardinal;
4 if constexpr(spy��simd_instruction_set �� spy��x86_simd_)
5 {
6 if constexpr(width �� 16) return x86_128_{};
7 else if constexpr(width �� 32) return x86_256_{};
8 else if constexpr(width �� 64) return x86_512_{};
9 }
10 else if constexpr(spy��simd_instruction_set �� spy��arm_simd_)
11 {
12 if constexpr(width �� 8) return arm_64_{};
13 else if constexpr(width �� 16) return arm_128_{};
14 }
15 �� ��� etc ���
16 }

19/31

Implementation of Architecture-Optimized Callables

Concepts for SIMD ABI

● Used in functions to discriminate optimization strategies

● Minimize the number of overloads of entry-points

● Reduced compile time by a factor of 3

1 template<typename T, typename N, x86_abi ABI>
2 auto add(wide<T,N,ABI> lhs, wide<T,N,ABI> rhs)
3 {
4 �� Do something with X86 SIMD instruction sets
5 }
6
7 template<typename T, typename N, non_native_abi ABI> �� For all other cases
8 auto add(wide<T,N,ABI> lhs, wide<T,N,ABI> rhs)
9 {
10 if constexpr(is_aggregated_v<ABI>) return aggregate(add,lhs,rhs);
11 else if constexpr(is_emulated_v<ABI>) return map(add,lhs,rhs);
12 }

20/31

Implementation of Architecture-Optimized Callables

The Issues

● SIMD instruction sets are widly divergent even for a given ABI

● Types, micro-architectures, etc all play a role

● How to be able to write the most efficient code with the least overloads?

if constexpr for intrinsics selection

● Use SPY to select instructon set at compile-time

● Provide a type → enumeration function to categorize types

● Categories are build as bitfield encoding base type, size and cardinal

● Nest if constexpr according to the optimisation we want to obtain

21/31

Implementation of Architecture-Optimized Callables

if constexpr for intrinsics selection

1 template<typename T, typename N, x86_abi ABI> auto add(wide<T,N,ABI> lhs, wide<T,N,ABI> rhs)
2 {
3 constexpr auto c = categorize<wide<T,N,ABI��();
4
5 if constexpr (c �� category��float64x8) return _mm512_add_pd(lhs,rhs);
6 else if constexpr (c �� category��float64x4) return _mm256_add_pd(lhs,rhs);
7 else if constexpr (c �� category��float64x2) return _mm_add_pd(lhs,rhs);
8 �� etc���
9 else if constexpr (c �� category��uint8x16) return _mm_add_epi8(lhs,rhs);
10 else if constexpr (current_api �� avx2)
11 {
12 if constexpr (c �� category��int64x4) return _mm256_add_epi64(lhs,rhs);
13 else if constexpr (c �� category��int32x8) return _mm256_add_epi32(lhs,rhs);
14 else if constexpr (c �� category��int16x16) return _mm256_add_epi16(lhs,rhs);
15 �� etc���
16 else if constexpr (c �� category��int8x32) return _mm256_add_epi8(lhs,rhs);
17 }
18 } 22/31

Functions: The Powerhouse of Numerical Libraries

Assessing the Situation

● Functions as Objects is a very valuable API design tool

● Names is a very small design space. Protect it

● Our mistake was to be to clever in implementation, Keep It Stupid Simple

23/31

OUR FINDINGS

● Concept and if constexpr are great to structure large overload set

● HOF makes API design easier on name finding

● Don't be shy to try amping up the Object side of Function Objects

● Looking forward std��tag_invoke

Other API Decisions

24/31

file:///large-hdd/dev/presentations/images/nectaire.png

Abstraction for Optimizations

The Issues

● Some SIMD idioms requires complicated knowledge or setup

● They are usually non-trivial for the users

● We could not wait for the users to discover them

Example: register swizzling

● SIMD registers can have their content moved around

● But each instructions sets has different rules for this

● How to have users not being left out by not using the correct swizzle ?

● “Library design for compilation time” as put by Victor Zverovich

25/31

Abstraction for Optimizations

Sample Swizzle

1 wide<float, fixed<4�� x;
2
3 �� Direct index pattern �� not very portable
4 auto rx = x[pattern<3,2,1,0>];
5
6 �� Parametric swizzle - use constexpr lambda
7 auto rx2 = x[as_pattern{ [](auto i, auto c) { return c-i-1; }}];
8
9 �� Parametric swizzle - using pre-defined pattern
10 auto rx2 = x[reverse_n<4>];

Benefits

● [C++20] Use a consteval mapping of patterns to implementation

● No need to remember which tricks work for which architecture

● Compile-time is mitigated by using consteval functions over template classes
26/31

Conclusion

27/31

file:///large-hdd/dev/presentations/images/reblochon.jpg

Time to taste!

Impact on code - Before

● Peak Boost.SIMD was 650K LOC

● Average compile-time for unit tests: 10-12s

● API was heterogeneous and prone to errors

Impact on code - After

● EVE is 54K LOC for equivalent features

● Average compile-time for unit tests: 3-4s

● API streamlined and simplified

The Heavy Hitters

● [C++20] Concepts

● [C++17] if constexpr
28/31

A Long Journey

15 years of Design on moving stages

● Hardware and Software were moving targets: 10+ new SIMD IS appeared since

● The ever-evolving C++ standard helped leverage ideas we deemed impossible

● Encouraged us to play around API design for users and devs

API is everything

● Libraries are more than a collection functions and types

● Names have powers, Users have memories

A Huge Thanks to:

● Jean-Thierry Lapresté, Mathematician extraordinaire

● Pierre Estérie, my former PHD student

● Denis Yaroshevskiy, for being a great contributor ;)

29/31

Thanks for your attention !

30/31

