
Herb Sutter

3

We’re “paying taxes” all the time

Productivity

Correctness and quality

Tooling

Teaching, learning, hiring, training

4

Common claim:
“C++ is too complex”

This talk's contribution:
Empirically catalog,
classify, and count

5

Essential complexity

Inherent in the problem,

present in any solution

Accidental complexity

Artifact of a specific solution design

6

…what is only complex is

mistaken (a not unusual

error) for what is profound

— Edgar Allan Poe,
in “The Murders In the Rue Morgue”

Catalogued so far (638 rules) Pending

7

Google: Abseil Tips

Meyers: Effective C++ Third Edition

Meyers: Effective Modern C++

Meyers: More Effective C++

Meyers: “Breaking All the Eggs in C++”

Perforce: High Integrity C++ 4.0

Sutter & Alexandrescu:
C++ Coding Standards

(in progress) PVS-Studio

CERT: CERT standard checks

Clang: clang-tidy checks

Lockheed-Martin & Stroustrup: Joint Strike
Fighter Air Vehicle coding std. for C++, Rev C

(upcoming) MISRA: MISRA C++ 202x

Stroustrup & Sutter, eds.:
C++ Core Guidelines

Sutter: Exceptional C++

Sutter: More Exceptional C++

Sutter: Exceptional C++ Style

8

533 language

84 std:: library

11 general/local

10 wrong (IMO)

9

533 language

10

533 language

361 accidental + improvable

11

533 language

147 ‘essential’ + improvable

361 accidental + improvable

12

533 language 25 essential + minimal

147 ‘essential’ + improvable

361 accidental + improvable

13

Brooks famously concluded: “No silver bullet”

Conclusion: “There is no single development, in either technology
or management technique, which by itself promises even
one order-of-magnitude improvement within a decade in
productivity, in reliability, in simplicity.”

“No Silver Bullet,” 1986; in The Mythical Man-Month Anniversary Ed.

But, note Brooks’ premise:

Therefore: We have a large problem and a large opportunity.

Premise: “How much of what software engineers now do is
still devoted to the accidental, as opposed to the essential?

Therefore: We have a large problem and a large opportunity.

Unless it is more than 9/10 of all effort, shrinking the
accidental activities to zero time will not give an order
of magnitude improvement.”

Therefore: We have a large problem and a large opportunity.

“

Therefore: We have a large problem and a large opportunity.

14

Unless it is more than 9/10 of all effort, shrinking the
accidental activities to zero time will not give an order
of magnitude improvement.”

Therefore: We have a large problem and a large opportunity.

“

Therefore: We have a large problem and a large opportunity.

15

“Inside C++, there is a much smaller
and cleaner language struggling to get out.”

— B. Stroustrup (D&E, 1994)

“Say 10% of the size of C++... Most of the
simplification would come from generalization.”

— B. Stroustrup (ACM HOPL-III, 2007)

Unless it is more than 9/10 of all effort, shrinking the
accidental activities to zero time will not give an order
of magnitude improvement.”

Therefore: We have a large problem and a large opportunity.

16

103, Multiple ways
to say the same

thing

81, How to pass
parameters

64, "Kind of class"
authoring

conventions38, Type safety

37, Initialization

34, Fighting
language defaults

26, Lifetime safety

19, Memory
management

17, Header files

15, Inheritance

13, Error handling

63, Other

17

Common claim:
“C++ is too complex”

This talk's contribution:
Empirically catalog,
classify, and count

18

Common claim:
“C++ is too complex”

This talk's contribution:
Empirically catalog,
classify, and count

Common despair:
“We can’t make things

substantially better”

This talk's contribution:
A possible 30% reduction

... 1/3 of the way to 10×

19

103, Multiple ways
to say the same

thing

81, How to pass
parameters

64, "Kind of class"
authoring

conventions38, Type safety

37, Initialization

34, Fighting
language defaults

26, Lifetime safety

19, Memory
management

17, Header files

15, Inheritance

13, Error handling

63, Other

20

How to pass
parameters

16%

Initialization
7%

21

What we teach today: “How” mechanics

In

Pass by value for “cheap to copy/move” types (incl. builtin types)

Otherwise, pass by const X&

+ Overload non-templated rvalue reference X&& + std::move once to optimize rvalues

except if X must be a type parameter, write templated forwarding reference X&& +
enable_if/requires is_lvalue_reference_v<X> and std::forward instead

except consider passing X by value if it’s an “in+copy” parameter to a constructor

In-out Pass by non-const X&

Out
Pass by non-const X& + nonstd annotations

Can’t distinguish from in-out in the language

Can’t enforce write-before-read or must-write

Move
Pass by non-templated rvalue reference X&& + std::move once

except if X must be a type parameter, write templated forwarding reference X&& +
enable_if/requires !is_lvalue_reference_v<X> and std::forward instead

Forward
Pass by templated forwarding reference T&& + std::forward once

and if we want only a concrete type X, add enable_if/requires is_convertible_v<T,X>

Aim to enable
“what,” not “how”

23

Declare intent directly:
f (in X x) // an X I can read from

f (inout X x) // an X I can read and write

f (out X x) // an X I will assign to

f (move X x) // an X I will move from

f (forward X x) // an X I will pass along

That’s it… all I’d like to teach about passing parameters in C++.

Most of the following slides are for people who already had to learn
today’s complex thing, to explain how it maps to the simpler thing.

24

void sample(... x, ... y) {

process(x);

if (something(x)) {
process(y);
x.hold();

} else {
cout << x;

}

transfer(y);

}

25

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold();

} else {
cout << x;

}

transfer(y);

}

26

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold(); // definite last use of x

} else {
cout << x; // definite last use of x

}

transfer(y);

}

27

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold(); // definite last use of x

} else {
cout << x; // definite last use of x

}

transfer(y); // definite last use of y

}

28

in X x

Calling
convention

X if cheap to
copy, else X*

Caller
arguments

Initialized
object
(l- or rvalue)

Callee uses x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
l/rvalue-ness
(incl. can
move from
rvalue arg)

C++20 Proposed equivalent

29

void f1(int x) {
g(x);

}

void f2(const X& x) { // for lvalues
g(x);

}
void f2(X&& x) { // for rvalues

g(std::move(x));
} // remember to move only once

template<typename T>
void f3(const T& t) {

g(t);
}
// hard to overload to pass by value
// hard to overload for rvalues

void f1(in int x) {
g(x);

}

void f2(in X x) {
g(x);

}

template<typename T>
void f3(in T t) {

g(t);
}

efficient: copies
builtins and moves

from rvalues (even if
f2 is a template)

simple and safe:
can’t modify param,
implicitly move for
last copy if rvalue

simple and clear:
no need to overload
to optimize values,
call std::move, or
remember to pass
builtins by value

30

in X x inout X x

Calling
convention

X if cheap to
copy, else X*

X*

Caller
arguments

Initialized
object
(l- or rvalue)

Initialized
non-const
lvalue

Callee uses x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
l/rvalue-ness
(incl. can
move from
rvalue arg)

x is treated as
a non-const
lvalue

If function is
not virtual,
some path
must have a
non-const use
of x (else use
in)

C++20 Proposed equivalent

31

void f1(/*inout*/ X& x) {
g(x); // ok
++x; // ok modifies but can omit

}

void f2(/*inout*/ X& x) {
y = x * 2; // ok

} // not flagged: did not write to x

// can’t distinguish inout vs out

void f1(inout X x) {
g(x); // ok
++x; // ok modifies and required

}

void f2(inout X x) {
y = x * 2;

} // error, did not write to x

simple and safe: read-before-write from x is
okay, but failure to write to x is not okay

simple and clear: can distinguish between
inout and out

32

in X x inout X x out X x

Calling
convention

X if cheap to
copy, else X*

X* X*

Caller
arguments

Initialized
object
(l- or rvalue)

Initialized
non-const
lvalue

Any
non-const
lvalue

Callee uses x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
l/rvalue-ness
(incl. can
move from
rvalue arg)

x is treated as
a non-const
lvalue

If function is
not virtual,
some path
must have a
non-const use
of x (else use
in)

Every path
must have a
definite first
use, that
either assigns
to x or passes
x to another
out param

C++20 Proposed equivalent

33

void f1(/*out*/ X& x) {
g(x); // not flagged: read
x = 42; // ok but can omit
g(x); // ok

}

void f2(/*out*/ X& x) {
/* ... no write to x ... */

} // not flagged: did not write to x

// can’t distinguish inout vs out

void f1(out X x) {
g(x); // error
x = 42; // ok, required
g(x); // ok

}

void f2(out X x) {
/* ... no write to x ... */

} // error, did not write to x

simple and safe: error to read-before-write
or fail to write; use-after-write is ok

simple and clear: can distinguish between
inout and out; out is value return where the

caller allocates the storage

34

in X x inout X x out X x move X x

Calling
convention

X if cheap to
copy, else X*

X* X* X*

Caller
arguments

Initialized
object
(l- or rvalue)

Initialized
non-const
lvalue

Any
non-const
lvalue

Initialized
non-const
rvalue

Callee uses x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
l/rvalue-ness
(incl. can
move from
rvalue arg)

x is treated as
a non-const
lvalue

If function is
not virtual,
some path
must have a
non-const use
of x (else use
in)

Every path
must have a
definite first
use, that
either assigns
to x or passes
x to another
out param

x is treated as
a non-const
lvalue

Except each
definite last
use of x treats
it as an rvalue
and must be
to a move
parameter

C++20 Proposed equivalent

35

void f1(X&& x) {
g(std::move(x));

}

template<typename T>
requires

(!std::is_lvalue_reference_v<T>)
void f2(T&& t) { // not an rref...

container.emplace_back
(std::forward<T>(t));

} // ... so “forward” instead of move

void f1(move X x) {
g(x);

}

template<typename T>
void f2(move T t) {

container.emplace_back(t);
}

simple and clear: allows consuming a
parameter even in a template

moving generic types is cumbersome

36

in X x inout X x out X x move X x forward X x

Calling
convention

X if cheap to
copy, else X*

X* X* X* X*

Caller
arguments

Initialized
object
(l- or rvalue)

Initialized
non-const
lvalue

Any
non-const
lvalue

Initialized
non-const
rvalue

Any object
(l- or rvalue)

Callee uses x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
l/rvalue-ness
(incl. can
move from
rvalue arg)

x is treated as
a non-const
lvalue

If function is
not virtual,
some path
must have a
non-const use
of x (else use
in)

Every path
must have a
definite first
use, that
either assigns
to x or passes
x to another
out param

x is treated as
a non-const
lvalue

Except each
definite last
use of x treats
it as an rvalue
and must be
to a move
parameter

x is treated as
a const lvalue

Except each
definite last
use preserves
the arg’s
const-ness
and l/r-
valueness

C++20 Proposed equivalent

37

template<typename T>
void f1(T&& t) {

container.emplace_back
(std::forward<T>(t));

}

template<typename T> // must be template
requires is_convertible_v<T, X>
// or: is_same_v<remove_cvref_t<T>,X>

void f2(T&& x) {
g(std::forward<T>(x));

}

template<typename T>
void f1(forward T t) {

container.emplace_back(t);
}

void f2(forward X x) {
g(x);

}

simple and clear: allows forwarding a
parameter without a template or std::forward

supports generic and concrete types: allows
forwarding generic and concrete types

forwarding concrete types is difficult

38

Prototype
implemented by
Andrew Sutton

(Lock3 Software)

Clang-based prototype

available at

cppx.godbolt.org

and hosted with
thanks by

Matt Godbolt
(Aquatic)

39

// copy_from: take any number of arguments by value/copy
void copy_from(auto...) { }

// run_history: Run some code and return the history it generated
std::string history;
auto run_history(auto f) { history = {}; f(); return history; }

// noisy<T>: A little helper to conveniently instrument T's SMF history
template<typename T> struct noisy {

T t;
noisy() { history += "default-ctor "; }
~noisy() { history += "dtor "; }
noisy(const noisy& rhs) : t{rhs.t} { history += "copy-ctor "; }
noisy(noisy&& rhs) : t{std::move(rhs.t)} { history += "move-ctor "; }
auto operator=(const noisy& rhs) { history += "copy-assign ";

t = rhs.t; return *this; }
auto operator=(noisy&& rhs) { history += "move-assign ";

t = std::move(rhs.t); return *this; }
};

40

Simple guidance,

non-template,

one parameter

cppx.godbolt.org/z/

xEx15c

41

Simple guidance,

non-template,

one parameter

cppx.godbolt.org/z/

fGTbc6

42

Simple guidance,

non-template,

two parameters

cppx.godbolt.org/z/

ne1dv1

120

250

43

44

45

46

//--
// Today’s "old" in-parameter implementation -- simple -- three parameters
//--

// ...
// Ctrl-C/Ctrl-V and tweak (8 combinations)
// ...

//--
// Proposed "new" in-parameter implementation -- simple -- three parameters
//--

void new_in(in String s1, in String s2, in String s3) {
copy_from(s1, s2, s3);

}

47

Advanced guidance,

template,

one parameter

cppx.godbolt.org/z/

498MaK

48

//--
// Todays "old" in-parameter implementation -- advanced -- three parameters
//--

// ...
// choose your own adventure (24 constrained overloads)
// ...

//--
// Proposed "new" in-parameter implementation -- advanced -- three parameters
//--

void new_in(in auto x, in auto y, in auto z) {
copy_from(x, y, z);

}

49

Advanced guidance, template, N parameters

cppx.godbolt.org/z/oxT6aq

50

How to pass
parameters

16%

Initialization
7%

66

Common claim:
“C++ is too complex”

This talk's contribution:
Empirically catalog,
classify, and count

Common despair:
“We can’t make things

substantially better”

This talk's contribution:
A possible 30% reduction

... 1/3 of the way to 10×

67

 Where to read more: github.com/hsutter/708
 Current draft of d0708, examples, test cases

 Where to try an in-progress implementation: cppx.godbolt.org
 Please file any issues at the repo above

 Teasers (answers in the paper):
 What would out this mean?

 What would X::operator= taking
in X mean?

 What would writing both mean?

class X {

// ...

public:

X& operator=(in X that) out;

};

73

1179 (2015-)

Lifetime

0515 (2017-)
<=> Comparison

0707 (2017-)
Metaclasses

0709 (2018-)
Static EH

0708 (2020-)
Parameters

Simplification Directly support
“owners” and

“pointers,”
eliminate classes

of use-after-
free/invalid

Directly express
comparison

intent, eliminate
boilerplate &

errors

Directly express
class authoring

intent, eliminate
boilerplate &

errors

Eliminate largest
fracture in C++

usage/libs

Directly express
param intent,

eliminate
boilerplate,
guaranteed
unified init

Prototype MSVC, Clang Clang Clang

Product/spec
adoption

 Guidelines
MSVC
 Clang

 C++20
(incl. std:: lib)

WG21 encouraged n/a

Next steps Continue Clang
upstreaming

(& WG21?)

C++2x reflection
& consteval

programming

Prototype Finish prototype

WG21 (when
face-to-face)

cppx.godbolt.org

Simplification: 1..7 of N

74

75

Don’t design an abstraction, then try to make it efficient

Examples: Smalltalk classes, C++0x concepts

Do learn from “what we already do.” For important abstractions,

“efficient” way we’ve already learned to implement them (but by hand)

then “abstraction” to let us directly express intent (and automate it!)

Examples: vtables (since C!), metaclasses, by-value EH, parameters

