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Why use the GPU?
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“The free lunch is over”

“The end of Moore’s Law”

“The future is parallel”
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Take a typical Intel chip

Intel Core i7 7th Gen
○ 4x CPU cores

■ Each with hyperthreading
■ Each with support for 256bit 

AVX2 instructions
○ Intel Gen 9 GPU

■ With 1280 processing 
elements
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Regular sequential C++ code (non-
vectorised) running on a single thread only 
takes advantage of a very small amount of 
the available resources of the chip
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Vectorisation allows you to fully utilise a 
single CPU core
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Multi-threading allows you to fully utilise all 
CPU cores
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Heterogeneous dispatch allows you to fully 
utilise the entire chip
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GPGPU programming was 

once a niche technology

● Limited to specific 

domain

● Separate source 

solutions

● Verbose low-level APIs

● Very steep learning 

curve
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This is not the case anymore

● Almost everything has a 

GPU now

● Single source solutions

● Modern C++ programming 

models

● More accessible to the 

average C++ developer

C++AMP

SYCL

CUDA Agency

Kokkos

HPX

Raja
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Brief introduction to SYCL
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SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 



© 2019 Codeplay Software Ltd.14

SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 
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SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 

Host compiler Device compiler

Applications

SYCL runtime

Backend (e.g. OpenCL)

SYCL template library

Device IR / ISA 
(e.g. SPIR)

CPU executable (embedded device binary)

• SYCL allows you write 
both host CPU and 
device code in the 
same C++ source file
• This requires two 

compilation passes; one 
for the host code and 
one for the device code
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SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 

• SYCL provides high-
level abstractions 
over common boiler-
plate code
• Platform/device 

selection
• Buffer creation
• Kernel compilation
• Dependency 

management and 
scheduling

Typical OpenCL hello world application

Typical SYCL hello world application
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• SYCL allows you to 
write standard C++
• No language extensions

• No pragmas

• No attributes

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

cgh.parallel_for<class vec_add>(range, [=](cl::sycl::id<2> idx) {

c[idx] = a[idx] + c[idx];

}));

SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 

std::vector<float> a, b, c;

#pragma parallel_for

for(int i = 0; i < a.size(); i++) {

c[i] = a[i] + b[i];

} __global__ vec_add(float *a, float *b, float *c) {

return c[i] = a[i] + b[i];

}

float *a, *b, *c;

vec_add<<<range>>>(a, b, c); 
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SYCL is a single-source, high-level, standard C++ programming 
model, that can target a range of heterogeneous platforms 

GPU APUCPU FPGAAccelerator DSP

• SYCL can target any 
device supported by its 
backend

• SYCL can target a 
number of different 
backends
• Currently the specification 

is limited to OpenCL
• Some implementations 

support other non-
standard backends
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SYCL implementations
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler

• The SYCL interface is a C++ template library that users and 
library developers program to
• The same interface is used for both the host and device code
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler

• The SYCL runtime is a library that schedules and executes 
work
• It loads kernels, tracks data dependencies and schedules commands
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler

• The host device is an emulated backend that is executed as native 
C++ code and emulates the SYCL execution and memory model
• The host device can be used without backend drivers and for debugging purposes
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler

• The backend interface is where the SYCL runtime calls down into a 
backend in order to execute on a particular device
• The standard backend is OpenCL but some implementations have supported others
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SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency 
tracker

Runtime 
Scheduler

Host device

Kernel 
loader

SYCL device 
compiler

• The SYCL device compiler is a C++ compiler which can identify 
SYCL kernels and compile them down to an IR or ISA
• This can be SPIR, SPIR-V, GCN, PTX or any proprietary vendor ISA
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Example SYCL application
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int main(int argc, char *argv[]) {

}
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

}

The whole SYCL API is included 
in the CL/sycl.hpp header file
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

queue gpuQueue{gpu_selector{}};

}

A queue is used to enqueue 
work to a device such as a GPU

A device selector is a function 
object which provides a 
heuristic for selecting a suitable 
device
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

queue gpuQeueue{gpu_selector{}};

gpuQeueue.submit([&](handler &cgh){

});

}

A command group describes a 
unit work of work to be 
executed by a device

A command group is created by 
a function object passed to the 
submit function of the queue
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

gpuQeueue.submit([&](handler &cgh){

});

}

We initialize three vectors, two 
inputs and an output
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

});

}

Buffers take ownership of data 
and manage it across the host 
and any number of devices
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

{

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

});

}

}

Buffers synchronize on 
destruction via RAII waiting for 
any command groups that need 
to write back to it
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#include <CL/sycl.hpp>

using namespace cl::sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

{

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

auto inA = bufA.get_access<access::mode::read>(cgh);

auto inB = bufB.get_access<access::mode::read>(cgh);

auto out = bufO.get_access<access::mode::write>(cgh);

});

}

}

Accessors describe the way in 
which you would like to access a 
buffer

They are also use to access the 
data from within a kernel 
function
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#include <CL/sycl.hpp>

using namespace cl::sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

{

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

auto inA = bufA.get_access<access::mode::read>(cgh);

auto inB = bufB.get_access<access::mode::read>(cgh);

auto out = bufO.get_access<access::mode::write>(cgh);

cgh.parallel_for<add>(range<1>(dA.size()),

[=](id<1> i){ out[i] = inA[i] + inB[i]; });

});

}

}

Commands such as parallel_for 
can be used to define kernel 
functions

The first argument here is a 
range, specifying the iteration 
space

The second argument is a 
function object that represents 
the entry point for the SYCL 
kernel

The function object must take
an id parameter that describes 
the current iteration being 
executed
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#include <CL/sycl.hpp>

using namespace cl::sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

{

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

auto inA = bufA.get_access<access::mode::read>(cgh);

auto inB = bufB.get_access<access::mode::read>(cgh);

auto out = bufO.get_access<access::mode::write>(cgh);

cgh.parallel_for<add>(range<1>(dA.size()),

[=](id<1> i){ out[i] = inA[i] + inB[i]; });

});

}

}

Kernel functions defined using 
lambdas have to have a 
typename to provide them with 
a name

The reason for this is that C++ 
does not have a standard ABI for 
lambdas so they are 
represented differently across 
the host and device compiler
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#include <CL/sycl.hpp>

using namespace cl::sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector{}};

{

buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));

buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));

gpuQeueue.submit([&](handler &cgh){

auto inA = bufA.get_access<access::mode::read>(cgh);

auto inB = bufB.get_access<access::mode::read>(cgh);

auto out = bufO.get_access<access::mode::write>(cgh);

cgh.parallel_for<add>(range<1>(dA.size()),

[=](id<1> i){ out[i] = inA[i] + inB[i]; });

});

}

}

This is the code which is
executed on the GPU
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SYCL programming model
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Processing 
Element

A processing element executes a single 

work-item

work-item
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Processing 
Element

Private 
memory

Each work-item can access private 

memory, a dedicated memory region 

for each processing element

work-item
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Processing 
Element

Private 
memory

A compute is composed of a number 

of processing elements and executes 

one or more work-group which are 

composed of a number of work-items

Compute unit

work-item
work-group(s)
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Private 
memory

Each work-item can access the local 

memory of their work-group, a 

dedicated memory region for each 

compute unit

Local 
memory

Compute unit

work-group(s)

Processing 
Element

work-item
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Private 
memory

A device can execute multiple work-

groups

Local 
memory

Compute unit

work-group(s)

Processing 
Element

work-item
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Processing 
Element

Private 
memory

Each work-item can access global 

memory, a single memory region 

available to all processing elements

Local 
memory

Global memory

Compute unit

work-item
work-group(s)
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Data must be copied or mapped 

between the host CPU memory and 

the GPU’s global memory

This is can be very expensive 

depending on the architecture

Global memory

GPU

Processing 
Element

Private 
memory

Local 
memory

Compute unit

work-item
work-group(s)CPU

CPU 
memory
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Private memory Local memory Global memory< <
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GPUs execute a large number of 

work-items
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They are not all guaranteed to 

execute concurrently, most GPUs do 

execute a number of work-items 

uniformly (lock-step)
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The number that are executed 

concurrently varies between 

different GPUs

There is no guarantee as to the 

order in which they execute
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What are GPUs good at?

➢ Highly parallel
○ GPUs can run a very large number of processing elements in parallel

➢ Efficient at floating point operations
○ GPUs can achieve very high FLOPs (floating-point operations per second)

➢ Large bandwidth
○ GPUs are optimised for throughput and can handle a very large bandwidth 

of data
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Optimising GPU programs
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There are different levels of optimisations you can apply

➢ Choosing the right algorithm

➢ This means choosing an algorithm that is well suited to parallelism

➢ Basic GPU programming principles

➢ Such as coalescing global memory access or using local memory

➢ Architecture specific optimisations

➢ Optimising for register usage or avoiding bank conflicts

➢ Micro-optimisations

➢ Such as floating point dnorm hacks
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There are different levels of optimisations you can apply

➢ Choosing the right algorithm

➢ This means choosing an algorithm that is well suited to parallelism

➢ Basic GPU programming principles

➢ Such as coalescing global memory access or using local memory

➢ Architecture specific optimisations

➢ Optimising for register usage or avoiding bank conflicts

➢ Micro-optimisations

➢ Such as floating point dnorm hacks

This talk will focus on these two
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Choosing the right algorithm
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What to parallelise on a GPU

➢ Find hotspots in your code base
○ Looks for areas of your codebase that are hit often and well suited to 

parallelism on the GPU

➢ Follow an adaptive optimisation approach such as APOD
○ Analyse -> Parallelise -> Optimise -> Deploy

➢ Avoid over-optimisation
○ You may reach a point where optimisations provide diminishing returns
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What to look for in an algorithm

➢ Naturally data parallel
○ Performing the same operation on multiple items in the computation

➢ Large problem
○ Enough work to utilise the GPU’s processing elements

➢ Independent progress
○ Little or no dependencies between items in the computation

➢ Non-divergent control flow
○ Little or no branch or loop divergence
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Basic GPU programming principles
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Optimizing GPU programs means maximizing throughput

Compute

Memory

Maximize compute operations

Reduce time spent on memory
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Optimizing GPU programs means maximizing throughput

➢ Maximise compute operations per cycle

➢ Make effective utilisation of the GPU’s hardware

➢ Reduce time spent on memory operations

➢ Reduce latency of memory access
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Avoid divergent control flow

➢ Divergent branches and loops can cause inefficient utilisation

➢ If consecutive work-items execute different branches they must execute 
separate instructions

➢ If some work-items execute more iterations of a loop than neighbouring 
work-items this leaves them doing nothing
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a[globalId] = 0;

if (globalId < 4) {

a[globalId] = x();

} else {

a[globalId] = y();

}
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a[globalId] = 0;

if (globalId < 4) {

a[globalId] = x();

} else {

a[globalId] = y();

}
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a[globalId] = 0;

if (globalId < 4) {

a[globalId] = x();

} else {

a[globalId] = y();

}
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a[globalId] = 0;

if (globalId < 4) {

a[globalId] = x();

} else {

a[globalId] = y();

}
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…

for (int i = 0; i <

globalId; i++) {

do_something();

}

…
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…

for (int i = 0; i <

globalId; i++) {

do_something();

}

…
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…

for (int i = 0; i <

globalId; i++) {

do_something();

}

…
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…

for (int i = 0; i <

globalId; i++) {

do_something();

}

…

x2 x3 x4 x5 x6 x7
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…

for (int i = 0; i <

globalId; i++) {

do_something();

}

…

x2 x3 x4 x5 x6 x7
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Coalesced global memory access

➢ Reading and writing from global memory is very expensive

➢ It often means copying across an off-chip bus

➢ Reading and writing from global memory is done in chunks

➢ This means accessing data that is physically close together in memory is 
more efficient
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float data[size];
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float data[size];

...

f(a[globalId]);
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float data[size];

...

f(a[globalId]);
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float data[size];

...

f(a[globalId]);

100% global access utilisation
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float data[size];

...

f(a[globalId * 2]);
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float data[size];

...

f(a[globalId * 2]);

50% global access utilisation
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This becomes very important 
when dealing with multiple 
dimensions

It’s important to ensure that the 
order work-items are executed 
in aligns with the order that 
data elements that are accessed

This maintains coalesced global 
memory access

global_id(0)
gl

o
b

al
_i

d
(1

)

auto id0 = get_global_id(0);

auto id1 = get_global_id(1);

auto linearId = (id1 * 4) + id0;

a[linearId] = f();

Row-major
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Here data elements are 
accessed in row-major and 
work-items are executed in row-
major

Global memory access is 
coalesced

global_id(0)
gl

o
b

al
_i

d
(1

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

auto id0 = get_global_id(0);

auto id1 = get_global_id(1);

auto linearId = (id1 * 4) + id0;

a[linearId] = f();

Row-major

Row-major
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0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15
If the work-items were executed 
in column-major

Global memory access is no 
longer coalesced

global_id(0)
gl

o
b

al
_i

d
(1

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

auto id0 = get_global_id(0);

auto id1 = get_global_id(1);

auto linearId = (id1 * 4) + id0;

a[linearId] = f();

Row-major

Column-major
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0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

However if you were to switch 
the data access pattern to 
column-major

Global memory access is 
coalesced again

global_id(0)
gl

o
b

al
_i

d
(1

)

auto id0 = get_global_id(0);

auto id1 = get_global_id(1);

auto linearId = (id0 * 4) + id1;

a[linearId] = f();

Column-major

Column-major

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Make use of local memory

➢ Local memory is much lower latency to access than global memory

➢ Cache commonly accessed data and temporary results in local memory 
rather than reading and writing to global memory

➢ Using local memory is not necessarily always more efficient

➢ If data is not accessed frequently enough to warrant the copy to local 
memory you may not see a performance gain



© 2019 Codeplay Software Ltd.83

1 7 5 8 2 3 8 3 4 6 2 2 4 5 8 3

1 3 4 3 2 4 3 4 5 6 1 6 5 7 8 5

9 2 1 8 1 4 6 9 5 1 4 5 1 9 4 7

3 6 2 0 2 2 9 8 2 7 9 4 2 6 1 5

1 7 2 2 8 4 6 8 4 7 6 8 3 2 4 1

4 9 9 5 1 3 7 3 8 1 7 4 1 5 9 4

4 0 6 3 6 9 9 6 8 5 9 9 0 2 1 5

3 8 1 2 4 7 1 7 6 7 7 2 6 3 6 7

6 7 5 4 3 1 4 4 2 6 3 0 5 0 7 0

1 3 4 2 2 8 1 6 4 9 5 3 7 1 2 4

7 5 4 3 7 0 4 0 3 0 4 4 2 8 9 0

0 9 9 8 0 2 9 8 2 1 6 0 6 3 4 1

6 4 0 1 9 1 7 4 8 3 0 5 0 2 0 6

1 5 7 6 3 0 6 5 4 6 0 4 1 8 7 0

3 3 0 5 9 8 2 4 7 1 5 2 0 4 9 7

1 9 0 4 0 3 0 6 1 2 8 7 0 1 2 9

If each work-item needs to 
access a number of 
neighbouring elements

And each of these operations 
loads directly from global 
memory this is can be very 
expensive

1 2 1

2 4 2

1 2 1
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1 7 5 8 2 3 8 3 4 6 2 2 4 5 8 3

1 3 4 3 2 4 3 4 5 6 1 6 5 7 8 5

9 2 1 8 1 4 6 9 5 1 4 5 1 9 4 7

3 6 2 0 2 2 9 8 2 7 9 4 2 6 1 5

1 7 2 2 8 4 6 8 4 7 6 8 3 2 4 1

4 9 9 5 1 3 7 3 8 1 7 4 1 5 9 4

4 0 6 3 6 9 9 6 8 5 9 9 0 2 1 5

3 8 1 2 4 7 1 7 6 7 7 2 6 3 6 7

6 7 5 4 3 1 4 4 2 6 3 0 5 0 7 0

1 3 4 2 2 8 1 6 4 9 5 3 7 1 2 4

7 5 4 3 7 0 4 0 3 0 4 4 2 8 9 0

0 9 9 8 0 2 9 8 2 1 6 0 6 3 4 1

6 4 0 1 9 1 7 4 8 3 0 5 0 2 0 6

1 5 7 6 3 0 6 5 4 6 0 4 1 8 7 0

3 3 0 5 9 8 2 4 7 1 5 2 0 4 9 7

1 9 0 4 0 3 0 6 1 2 8 7 0 1 2 9

A common technique to avoid 
this is to use local memory to 
break up your data into tiles

Then each tile can be moved to 
local memory while a work-
group is working on it

4 6 2 2 4 5 8 3

5 6 1 6 5 7 8 5

5 1 4 5 1 9 4 7

2 7 9 4 2 6 1 5

4 7 6 8 3 2 4 1

8 1 7 4 1 5 9 4

8 5 9 9 0 2 1 5

6 7 7 2 6 3 6 7
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Synchronise work-groups when necessary

➢ Synchronising with a work-group barrier waits for all work-items to reach the 
same point

➢ Use a work-group barrier if you are copying data to local memory that 
neighbouring work-items will need to access

➢ Use a work-group barrier if you have temporary results that will be shared 
with other work-items
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Remember that work-items are not 

all guaranteed to execute 

concurrently
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A work-item can share results with 

other work-items via local and global 

memory
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This means that it’s possible for a 

work-item to read a result that hasn’t 

yet been written to yet, you have a 

data race
data race
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This problem can be solved by a 

synchronisation primitive called a 

work-group barrier
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Work-items will block until all 

work-items in the work-group have 

reached that point
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Work-items will block until all 

work-items in the work-group have 

reached that point
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So now you can be sure that all of 

the results that you want to read 

from have been written to
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However this does not apply across 

work-group boundaries, and you 

have a data race again

work-group 1work-group 0

data race
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Choosing an good work-group size

➢ The occupancy of a kernel can be limited by a number of factors of the GPU

➢ Total number of processing elements

➢ Total number of compute units

➢ Total registers available to the kernel

➢ Total local memory available to the kernel

➢ You can query the preferred work-group size once the kernel is compiled

➢ However this is not guaranteed to give you the best performance

➢ It’s good practice to benchmark various work-group sizes and choose the best
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Conclusions
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Takeaways

➢ Identify which parts of your code to offload and which algorithms to use

➢ Look for hotspots in your code that are bottlenecks

➢ Identify opportunity for parallelism

➢ Optimising GPU programs means maximising throughput

➢ Maximize compute operations

➢ Minimise time spent on memory operations

➢ Use profilers to analyse your GPU programs and consult optimisation guides
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Further tips

➢ Use profiling tools to gather more accurate information about your programs

➢ SYCL provides kernel profiling

➢ Most OpenCL implementations provide proprietary profiler tools

➢ Follow vendor optimisation guides

➢ Most OpenCL vendors provide optimisation guides that detail 
recommendations on how to optimise programs for their respective GPU
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SYCL for Nvidia GPUs
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SYCL on non-OpenCL backends?

• SYCL 1.2/1.2.1 was designed for OpenCL 1.2

• Some implementations are supporting non-OpenCL backends (ROCm, 
OpenMP)

• So what other backends could SYCL be a high level model for?

What about CUDA?

• Support for Nvidia GPUs is probably one of the most requested features 
from SYCL application developers

• Existing OpenCL + PTX path for Nvidia GPUs in ComputeCpp (still 
experimental)

• Native CUDA support is better for expanding the SYCL ecosystem
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PI/CUDA plugin

CUDA Driver API

Nvidia GPU

DPC++ is an open-
source SYCL 
implementation

Has various 
extensions to the 
SYCL 1.2.1 API

Also provides a 
plugin interface (PI) 
to extend it for 
other backends
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Preliminary performance results

http://uob-hpc.github.io/BabelStream Platform: CUDA 10.1 on GeForce GTX 980
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• First build or download a
binary package of DPC++
• Nvidia support is now available in

DPC++

• There daily and more stable monthly
releases

• Release packages:
• https://github.com/intel/llvm/releases

• Detailed introductions:
• https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

How to use it?

https://github.com/intel/llvm/releases
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
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• Then compile you SYCL application with the DPC++ compiler 
using the CUDA triple

• Then enable the CUDA backend in the SYCL runtime by 
setting the environment variable

clang++ -fsycl –fsycl-targets=nvptx64-nvidia-cuda-sycldevice sample.cpp –o sample

SYCL_BE=PI_CUDA ./sample
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• And that’s it…

• Make sure to use a device selector in your application that 
will choose an Nvidia device

• Using both the OpenCL backend and the CUDA backend at 
the same time is currently not supported
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SYCL 2020 preview
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Backend generalization Modules

Unified shared memory In-order queues

Specialization constants

Sub-groups

Group algorithms Host tasks Improved address space inference

2020

Indicative only, still subject to change!
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Unified Shared Memory
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Global memory

GPU

Processing 
Element

Private 
memory

Local 
memory

Compute unit

work-item
work-group(s)CPU

CPU 
memory
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Unified shared memory allows the 

host CPU and the GPU to access a 

shared address space

This means a pointer allocated on the 

host CPU can be dereferenced on the 

GPU

Unified shared memory (USM)

GPU

Processing 
Element

Private 
memory

Local 
memory

Compute unit

work-item
work-group(s)CPU
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Explicit USM
(minimum)

Restricted USM
(optional)

Concurrent USM
(optional)

System USM
(optional)

Consistent pointers ✓ ✓ ✓ ✓

Pointer-based 
structures

✓
✓ ✓ ✓

Explicit data 
movement

✓
✓ ✓ ✓

Shared access ✗ ✓ ✓ ✓

Concurrent access ✗ ✗ ✓ ✓

System allocations
(malloc/new)

✗ ✗ ✗ ✓
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

}

If we take our example from 
earlier
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

auto inA = malloc_device<float>(dA.size(), gpuQeueue);

auto inB = malloc_device<float>(dA.size(), gpuQeueue);

auto out = malloc_device<float>(dA.size(), gpuQeueue);

}

With the USM explicit data 
movement model we can 
allocate memory on the device 
by calling malloc_device

This pointer will be consistent 
across host and device, but only 
dereferenceable on the device
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

auto inA = malloc_device<float>(dA.size(), gpuQeueue);

auto inB = malloc_device<float>(dA.size(), gpuQeueue);

auto out = malloc_device<float>(dA.size(), gpuQeueue);

auto bytes = dA.size() * sizeof(float);

gpuQueue.memcpy(inA, dA.data(), bytes).wait();

gpuQueue.memcpy(inB, dB.data(), bytes).wait();

}

Now using the queue we can 
copy from the input std::vector 
objects initialized on the host to 
the device memory allocations 
by calling memcpy

Since these are asynchronous 
operations they return events, 
which can be used to 
synchronise with the 
completion of the copies

In this case we just wait 
immediately by calling wait
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

auto inA = malloc_device<float>(dA.size(), gpuQeueue);

auto inB = malloc_device<float>(dA.size(), gpuQeueue);

auto out = malloc_device<float>(dA.size(), gpuQeueue);

auto bytes = dA.size() * sizeof(float);

gpuQueue.memcpy(inA, dA.data(), bytes).wait();

gpuQueue.memcpy(inB, dB.data(), bytes).wait();

gpuQueue.parallel_for(range(dA.size()),

[=](id i){ out[i] = inA[i] + inB[i]; });

}).wait();

}

We can invoke a SYCL kernel 
function in the same way as 
before using command groups

However, here we are using one 
the new shortcut member 
functions of the queue

Again this operation is 
asynchronous so we wait on the 
returned event
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

auto inA = malloc_device<float>(dA.size(), gpuQeueue);

auto inB = malloc_device<float>(dA.size(), gpuQeueue);

auto out = malloc_device<float>(dA.size(), gpuQeueue);

auto bytes = dA.size() * sizeof(float);

gpuQueue.memcpy(inA, dA.data(), bytes).wait();

gpuQueue.memcpy(inB, dB.data(), bytes).wait();

gpuQueue.parallel_for(range(dA.size()),

[=](id i){ out[i] = inA[i] + inB[i]; });

}).wait();

gpuQueue.memcpy(dO.data(), out, bytes).wait();

}

Finally we can copy from the 
device memory allocation to the 
output std::vector by again 
calling memcpy

And just as we did for the copies 
to the device we call wait on the 
returned event
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#include <SYCL/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector dA{ … }, dB{ … }, dO{ … };

queue gpuQeueue{gpu_selector_v};

auto context = gpuQueue.get_context();

auto inA = malloc_device<float>(dA.size(), gpuQeueue);

auto inB = malloc_device<float>(dA.size(), gpuQeueue);

auto out = malloc_device<float>(dA.size(), gpuQeueue);

auto bytes = dA.size() * sizeof(float);

gpuQueue.memcpy(inA, dA.data(), bytes).wait();

gpuQueue.memcpy(inB, dB.data(), bytes).wait();

gpuQueue.parallel_for(range(dA.size()),

[=](id i){ out[i] = inA[i] + inB[i]; });

}).wait();

gpuQueue.memcpy(dO.data(), out, bytes).wait();

free(inA, context);

free(inB, context);

free(out, context);

}

Once we are finished with the 
device memory allocations we 
can free them

There is also a usm_allocator
available
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Getting started with SYCL

SYCL specification: khronos.org/registry/SYCL

SYCL news: sycl.tech

SYCL Academy: github.com/codeplaysoftware/syclacademy

ComputeCpp: computecpp.com

DPC++: github.com/intel/llvm/releases

hipSYCL: https://github.com/illuhad/hipSYCL
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